Strip for connectors

Included: Product News January 2021
Requirements to the copper base material

Copper and Copper alloys for a wide variety of connectors

Connection technology for electronic components has to fulfill various tasks using a high variety of different connectors, such as miniaturized spring-type terminals, press-fit connectors, high current connectors. All these connectors are preferably made of copper and copper alloys. Very often strip is used. Due to the different jobs to be done, the requirements on the base materials differ from case to case.

On one hand the production of a connector has requirements to further processibility, e.g. heavy cold forming in flexible press-in zones of a press-fit connector. On the other hand, mechanical and electrical task-related functional requirements over the entire service life, are designed in by the design engineers and expected to be supplied by the base material.

Requirements to processibility

Copper and copper alloy strip is subjected to various processes which the customers apply. Usually stamping is the first step. Stamping takes place in combination with cold forming operations such as bending, embossing and deep drawing. Further steps might be welding and galvanic coating. The material’s contribution to these processes are:

- ductility and forming capacity
- weldability
- coatability

The ability to be coated by galvanic process with tin, silver, nickel and copper layers is given by all copper alloys. Additionally Wieland is able to offer pre-tinned strip by the hot-dip tin coating process. The properties, advantages of hot-dip tin coated strips and its variants are described in a separate brochure.

Fig. 1:
Press-fit connectors
Functional requirements

After the material has been converted into a connector, it has to meet certain functional requirements depending on the specific tasks of the connector. The requirements are translated into material properties in the following way:

- conducting high currents and transferring high signal rates without self-heating requires high electrical conductivity
- applying high spring forces relates to high strength
- keeping the properties constant over long period and at elevated service temperature relates to resistance against thermal stress relaxation

As some properties cannot be optimized at the same time in one alloy, e.g. conductivity and strength, prioritizing is necessary. High-conductivity is required, if the task of the connector is to transfer high currents and avoid self-heating. In other cases, high spring forces are the prioritized requirement, the material must have high strength.

Wieland Copper materials for connectors

Selecting the suitable copper alloy

For the selection of materials, a wide variety of alloys with different properties is available. Fig. 2 shows the Wieland alloys in the conductivity – strength diagram. This diagram shows the Wieland copper alloys in tempers which all exhibit the same cold formability (bendable 90°CW, r/t = 0.5). The diagram allows easy alloy selection according to the properties electrical conductivity and strength. The copper alloys with high-thermal relaxation resistance are indicated in red in Fig. 2.

Pure Coppers

Pure copper is characterized by the highest achievable electrical conductivity of 58 MS/m (100 % IACS). Pure copper is the first choice in applications, where the focus is on conducting of high currents and/or heat.

Typical applications include cables, bus bars, solderless terminals and substrates for power electronics.

High-copper alloys incl. copper iron alloys

In cases of higher strength and high conductivity requirements, the material group of high-copper alloys is used. These alloys contain small amounts of solid solution hardening atoms such as tin and zinc.

Examples are Wieland-K81 (CuSn0.15, C14415) as well as the copper-iron alloys Wieland-K80 (CuFe0.1P, C19210) and Wieland-K65 (CuFe2P, C19400).
Fig. 2:
Conductivity-strength diagram showing the property combination of various alloys. The group of high-performance alloys, which show a very good thermal-relaxation resistance are highlighted in red color. Fine grain bronzes (SUPRALLOY® bronzes) are indicated in blue.

A detailed material selection program is available in the internet under www.wieland-alloywizard.com as well as on the Wieland website.

Fig. 3:
Schematic of high-current connectors
High-performance copper alloys

High-performance copper alloys combine a certain electrical conductivity and strength with a high thermal relaxation resistance. The latter property describes the ability of the material, to keep the spring forces in a connector as high as possible, at elevated temperatures over long periods of time. The ability is based on the metallurgical phenomenon called precipitation hardening. Therefore, certain elements are added, such as Ni + Si, Cr + Si and Si + Ti.

These alloys are well established in many kinds of applications, such as spring connectors, press-fit connectors, contact springs in terminal blocks, relays, switches, miniaturized connectors, e.g. board-to-board connectors, as well as in sockets for microprocessors.

Typical alloys are:

- High-Strength type alloys
 K55 (CuNi3SiMg, C70250)
 K57 (CuNi1Co1Si, C70350)
 K73 (CuNi1ZnSi, C19005)
 K76 (CuNi1SiP, C19010)

- High-Conductivity type alloys
 K75 (CuCrSiTi, C18070)
 K88 (CuCrAgFeTiSi, C18080)

Newly developed high-performance alloys

The trend towards further miniaturization of connectors requires materials which provide higher strength than before. The new developed Wieland-K58, a C70250 Corson type alloy, provides tensile strength of minimum 920 MPa’s.

Another trend is the increasing application of high-current connectors. Wieland-K75 was further developed to serve their needs. K75 now is available in a high-conductivity version with an electrical conductivity of minimum 83 % IACS while keeping its strength and relaxation properties on the high level.

Fig. 4: Thermal-stress relaxation diagram of high-performance alloys in compression with phosphor bronze.
Source: www.wieland-alloywizard.com
Brass and Special Brass

Brass is a copper-zinc alloy with a zinc content of up to 38%. The main advantage of brasses is their comparatively low metal price, because zinc is significantly cheaper than copper. Special brasses, contain additional elements which help to increase strength and thermal properties. However, there are various disadvantages, such as low-temperature resistance, susceptibility to stress-corrosion cracking and the risk of zinc evaporation during arc welding. Therefore brass and special brass is applied in uncritical connectors only.

- Typical brasses are Wieland-M30 (CuZn30, C26000) and Wieland-M36 (CuZn36, C27000).
- Typical special brasses are Wieland-S12 (CuZn9Sn3, C42500) and Wieland-S23 (CuZn23Al3Co, C68800).

Phosphor bronze

Phosphor bronzes are alloys of copper and tin. Bronzes have an advantageous combination of properties of good strength, good formability and a certain resistance to thermal relaxation, which allows an application up to approx. 100 °C. Thus, bronzes established themselves very well as base materials in spring connectors, press-fit connectors and other contacts for the transmission of signals.

- Typical phosphor bronzes are Wieland-B14 (CuSn4, C51100)
 Wieland-B16 (CuSn6, C51900)
 Wieland-B18 (CuSn8, C52100)

Fine-grain bronze

Wieland SUPRALLOY® B14, B16, B18 are the fine-grain versions of the standard phosphor bronzes CuSn4, CuSn6 and CuSn8. They have the same UNS numbers as the standard bronzes, see above. The microstructure has fine-grain sizes of 1–3 μm. This results in higher strengths paired with a considerably better formability.

With the same formability, the yield strength of fine-grained bronze is approximately 120 MPa higher. In addition, the fine-grained bronze can withstand significantly increased cyclic load (higher fatigue resistance, higher vibration resistance).

Copper-Nickel-Tin alloys

This specialty of copper-nickel tin alloys is the very high strength in combination and very good relaxation resistance, also combined with good formability. Typical alloys are Wieland-L49 (CuNi9Sn2, C72500) and Wieland-L96 (CuNi9Sn6, similar to C72700).

Wieland-L96 aims for applications in which traditionally CuBe1.7, CuBe2 and CuTi3 is used. Typical applications are miniaturized signal connectors, springs in mobile phones and grounding contacts in consumer electronics and datacom.

![Automotive connectors stamped from tinned strip](image-url)
Material designations

<table>
<thead>
<tr>
<th>Wieland Designation</th>
<th>DIN Designation</th>
<th>EN Designation</th>
<th>Number</th>
<th>UNS No.</th>
<th>JIS No.</th>
</tr>
</thead>
</table>
Copper
- **K09** OFE-Cu – CW009A C10100 C1011
- **K11** OF-Cu Cu-OF CW008A C10200 –
- **K12** SE-Cu 57 Cu-HCP CW021A C10300 –
- **K14** SECu- 58 Cu-PHC CW020A C10300 –
- **K15** SW-Cu Cu-DLP CW023A C12000 C1201
- **K19** Sf-Cu Cu-DHP CW024A C12200 C1220
- **K32** E-Cu 58 Cu-ETP CW004A C11000 C1100
High-copper alloy
- **K65** CuFe2P CuFe2P CW107C C19400 –
- **K80** CuFe0,1P* CuFe0,1P** – C19210 –
- **K81** CuSn0,15* CuSn0,15 CW117c C14415 –
High-performance copper alloy
- **K55/K58 high-strength** CuNi3SiMg* CuNi3SiMg** – C70250 –
- **K57** CuNiCo1Si* CuNiCo1Si** – C70350 –
- **K73** CuNi1SnSi* CuNi1SnSi** – C19005 –
- **K75/K75 high-conductivity** CuCrSiTi CuCrSiTi – C18070 –
- **K76** CuNi1SiP* CuNi1SiP** – C19010 –
- **K88** CuCrAgFeTiSi* CuCrAgFeTiSi** – C18080 –
Brass
- **M05** CuZn5 CuZn5 CW500L C21000 C2100
- **M10** CuZn10 CuZn10 CW501L C22000 C2200
- **M15** CuZn15 CuZn15 CW502L C23000 C2300
- **M20** CuZn20 CuZn20 CW503L C24000 C2400
- **M30** CuZn30 CuZn30 CW505L C26000 C2600
- **M33** CuZn33 CuZn33 CW506L C26800 C2680
- **M36** CuZn36 CuZn36 CW507L C27000 C2700
- **M37** CuZn37 CuZn37 CW508L C27200 C2720
- **M38** CuZn38 CuZn38 CW508L C27200 C2720
Special brass
- **S12** CuSn3Zn9* CuSn3Zn9 CW454K C51100 C5111
- **S23** CuZn23Al3Co* CuZn23Al3Co CW703R C68800 –
Phosphor bronze
- **B14** CuSn4 CuSn4 CW450K C51100 C5111
- **B15** CuSn5* CuSn5 CW451K C51000 C5102
- **B16** CuSn6 CuSn6 CW452K C51900 C5191
- **B18** CuSn8 CuSn8 CW453K C52100 C5212
CuNi-alloy
- **L49** CuNi9Sn2 CuNi9Sn2 CW351 C72500 –
- **L96** CuNi9Sn6 CuNi9Sn6 similar to C72700

* material not-standardized in accordance with DIN
** material not-standardized in acc. with EN
Hot-dip tin coated strip

Hot-dip tin coating is an economical method to provide copper and copper alloy strip with a well adhering and multi-functional tin layer.

SnPUR® is the standard hot dip tin coating type. It consists of two layers, the intermetallic phase (IMP) adhering to the base metal and the free tin top layer. The IMP makes the coating resistant against whisker formation. The free tin layer ensures good electrical contact.

SnTEM® type coating consists of IMP only and thus provides a higher surface hardness. It is applied in cases when reduced mating forces and low tool wear is required.

SnTOP® type coating contains a certain low percentage of Ag which allows application at temperatures up to 160 °C.

For detailed information please see the brochure “Hot-dip tinned copper and copper alloy strip” on our website.
Contour-milled strip

Contour milling is a process to produce dual-gauge and multi-gauge strip. This type of strip opens up new possibilities of producing electromechanical components with sections of different thicknesses. They no longer have to be joined from different stamped parts but can be stamped in one operation. Coining in the stamping tool is no longer necessary.

For detailed information please see the brochure "Multi-gauge strip" on our website.
Dimensions and Tolerances

Tolerances

Wieland’s customers process strips using high-precision equipment which makes particular demands on the tolerances and the geometric properties of the strip. Thickness and width tolerances can be restricted to the tightest of margins compared with the relevant standards. Special measures can be taken during strip production in order to minimise shape deviations such as longitudinal camber, coil set or cross bow. With this, the particular requirements of the tool can be anticipated and accounted for.

Strip-thickness tolerances

<table>
<thead>
<tr>
<th>Strip-thickness</th>
<th>Strip-thickness tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Precision level acc. to production costs</td>
<td>i</td>
</tr>
<tr>
<td>over</td>
<td>up to</td>
</tr>
<tr>
<td>0.10</td>
<td>0.30</td>
</tr>
<tr>
<td>0.30</td>
<td>0.50</td>
</tr>
<tr>
<td>0.50</td>
<td>0.80</td>
</tr>
<tr>
<td>0.80</td>
<td>1.30</td>
</tr>
<tr>
<td>1.30</td>
<td>1.50</td>
</tr>
<tr>
<td>1.50</td>
<td>on request</td>
</tr>
</tbody>
</table>

Strip-width tolerances

<table>
<thead>
<tr>
<th>Strip-thickness</th>
<th>Width-tolerance according to EN 1625</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Strip width</td>
<td></td>
</tr>
<tr>
<td>over</td>
<td>up to</td>
</tr>
<tr>
<td>0.10</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>3.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

For strip thicknesses of up to 0.6 and strip widths of up to 100 mm, tolerances of half the values listed above can be supplied on request.

Camber

<table>
<thead>
<tr>
<th>Strip thickness</th>
<th>Camber according to EN 1654</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Strip width</td>
<td></td>
</tr>
<tr>
<td>over</td>
<td>up to</td>
</tr>
<tr>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Increased work in manufacturing allows the camber of a strip to be reduced to the following tolerances:

<table>
<thead>
<tr>
<th>Strip thickness</th>
<th>Camber according to EN 1654</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Strip width</td>
<td></td>
</tr>
<tr>
<td>over</td>
<td>up to</td>
</tr>
<tr>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Delivery Formats and Packaging

Strip in coils

Coils are the simplest and therefore the most economical delivery format for strip. They are packed horizontally on square or round pallets, the size of which is adjusted to the outer diameter of the coils.

Taverse-wound strip

Taverse-wound strip comes in coils which are welded together using the TIG process and then wound onto a drum. The resulting strands are considerably longer than with individual coils. The advantage is a reduction in the operator’s changeover times. The welds are marked in colour.

Wieland-MULTICOIL®

Wieland-MULTICOIL is packed with all the coils in a stack joined with each other to produce the longest possible strip length. With this method a whole stack of coils can be processed in a single stamping run. Uncoiling can be done on existing horizontal decoilers, so no investment is needed in equipment. The advantages:

– stamping runs with less downtime
– reduced risk of tool break at coil feedings
– higher productivity

Sizes and weights

<table>
<thead>
<tr>
<th>Strip thickness</th>
<th>Strip width</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20–0.80 mm</td>
<td>10–60 mm</td>
</tr>
<tr>
<td>0.81–1.20 mm</td>
<td>10–40 mm</td>
</tr>
</tbody>
</table>

Maximum pallet weight 5 t

Wieland-FLEXIDRUM®

Drum logistics, too, can be improved even further. Wieland’s latest contribution is called FLEXIDRUM. Removable and re-usable spool flanges are retained by the customer. The coils are delivered on cores without flanges, and so the flanges can be fitted very simply on the spot without having to lift the core. The cores can be supplied either as reusable or one-way cores.