
wieland

Bänder für Steckverbinder

Anforderungen an das Bandmaterial

Kupfer und Kupferlegierungen für verschiedene Steckverbinder

Die Verbindungstechnik für elektronische Bauelemente muss mit einer Vielzahl von unterschiedlichen Steckverbindungen, wie miniaturisierten Federklemmen, Einpresskontakten und Hochstromsteckverbindern, unterschiedliche Aufgaben erfüllen. Alle diese Steckverbinder werden vorzugsweise aus Kupfer und Kupferlegierungen hergestellt. Sehr oft wird Bandmaterial verwendet. Aufgrund der vielfältigen Aufgaben sind die Anforderungen an die Bandmaterialien von Fall zu Fall unterschiedlich.

Zum einen ergeben sich durch die Herstellung eines Steckverbinders Anforderungen an die weitere Verarbeitbarkeit, z. B. starke Kaltumformung in der flexiblen Einpresszone eines Einpressverbinders. Andererseits werden von den Konstrukteuren mechanische und elektrische Funktionsanforderungen über die gesamte Lebensdauer konzipiert, die das Basismaterial erfüllen muss.

Anforderungen an die Verarbeitbarkeit

Bänder aus Kupfer und Kupferlegierungen werden verschiedenen Verarbeitungsprozessen unterzogen, die von den Kunden eingesetzt werden. In der Regel ist das Stanzen der erste Schritt. Das Stanzen erfolgt in Kombination mit Kaltumformoperationen wie Biegen, Prägen und Tiefziehen. Weitere Schritte können das Schweißen und die galvanische Beschichtung sein. Folgende Eigenschaften trägt das Material hierzu bei:

Die Möglichkeit der galvanischen Beschichtung mit Zinn-, Silber-, Nickel- und Kupferschichten ist bei allen Kupferlegierungen gegeben. Darüber hinaus ist Wieland in der Lage, vorverzinntes Band im Feuerverzinnungsverfahren anzubieten. Die Eigenschaften, Vorteile und Varianten feuerverzinnter Bänder werden in einer separaten Broschüre beschrieben.

- Duktilität und Umformbarkeit
- Schweißeignung
- Beschichtbarkeit

Funktionale Eigenschaften

Aufgabe eines Steckverbinders ist es, bestimmte funktionale Anforderungen zu erfüllen. Die Anforderungen werden wie folgt in Materialeigenschaften umgesetzt:

- Die Leitung hoher Ströme und die Übertragung hoher Signalraten ohne Eigenerwärmung erfordert eine hohe elektrische Leitfähigkeit.
- Das Aufbringen hoher Federkräfte erfordert eine hohe Festigkeit, bzw. eine hohe Streckgrenze.
- Die Erhaltung der Federkräfte über einen langen
 Zeitraum bei erhöhter Einsatztemperatur erfordert
 Beständigkeit gegen thermische Spannungsrelaxation.

Da verschiedene Eigenschaften in einer Legierung nur bedingt gleichzeitig optimiert werden können, z. B. Leitfähigkeit und Festigkeit, ist eine Priorisierung erforderlich. Eine hohe Leitfähigkeit ist erforderlich, wenn es die Aufgabe des Steckverbinders ist, hohe Ströme zu übertragen und Eigenerwärmung zu vermeiden. In anderen Fällen stehen hohe Federkräfte im Vordergrund und das Material muss eine hohe Festigkeit aufweisen.

Wieland Kupfer & Kupferlegierungen für Steckverbinder

Auswahl eines geeigneten Werkstoffs

Für die Werkstoffauswahl steht eine Vielzahl von Legierungen mit unterschiedlichen Eigenschaften zur Verfügung. Abb. 2 zeigt die Wieland-Legierungen im Leitfähigkeit- Festigkeits-Diagramm. Dieses Diagramm zeigt die Wieland-Kupferlegierungen in Zustandsformen, die alle die gleiche Kaltumformbarkeit aufweisen (biegbar 90°GW, r/t = 0,5).

Das Diagramm ermöglicht eine einfache Legierungsauswahl anhand der Eigenschaften elektrische Leitfähigkeit und Festigkeit. Die Kupferlegierungen mit einer hohen Beständigkeit gegen thermische Spannungsrelaxation sind in rot dargestellt in Abb. 2.

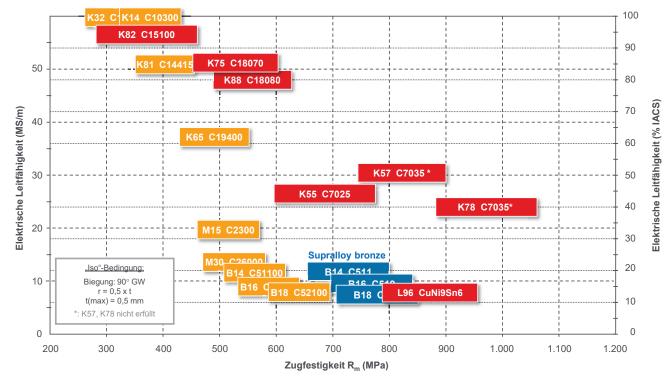


Abb. 2: Leitfähigkeits-Festigkeitsdiagramm, das die Eigenschaftskombination verschiedener Legierungen zeigt. Die Gruppe der Hochleistungslegierungen, die eine sehr gute thermische Relaxationsbeständigkeit aufweisen, sind rot markiert. Feinkörnige Bronzen (SUPRALLOY®-Bronzen) sind blau gekennzeichnet.

Reinkupfer

Reines Kupfer zeichnet sich durch die höchste erreichbare elektrische Leitfähigkeit von 58 MS/m (100 % IACS) aus. Reinkupfer ist die erste Wahl in Anwendungen, bei denen der Schwerpunkt auf der Leitung von hohen Strömen und/oder Wärmeableitung liegt.

Typische Anwendungen sind Kabel, Stromschienen, lötfreie Klemmen und Substrate für die Leistungselektronik.

Niedrig legierte Kupferlegierungen inklusive Kupfer-Eisen-Legierungen

Bei höheren Festigkeiten und hohen Leitfähigkeitsanforderungen wird die Werkstoffgruppe der niedrig legierten Kupferlegierungen eingesetzt. Diese Legierungen enthalten geringe Mengen an mischkristallhärtenden Atomen wie Zinn und Zink.

Beispiele hierfür sind Wieland-K81 (CuSn0.15, C14415) und Kupfer-Eisen-Legierungen Wieland-K80 (Cu-Fe0.1P, C19210) und Wieland-K65 (CuFe2P, C19400).

Hochleistungslegierungen

Hochleistungskupferlegierungen kombinieren eine bestimmte elektrische Leitfähigkeit und Festigkeit mit einer hohen thermischen Relaxationsbeständigkeit. Letztere Eigenschaft beschreibt die Fähigkeit des Materials, die Federkräfte in einem Steckverbinder bei erhöhten Temperaturen über lange Zeiträume so hoch wie möglich zu halten. Die Fähigkeit basiert auf dem metallurgischen Phänomen des Ausscheidungshärtens. Daher werden bestimmte Elemente zulegiert, wie z. B. Ni + Si, Cr + Si und Si + Ti.

Diese Legierungen haben sich in vielen Anwendungsbereichen etabliert, wie z. B. federnde Steckverbinder, Einpresskontakte, Kontaktfedern in Reihenklemmen, Relais, Schalter, miniaturisierte Steckverbinder, z. B. Leiterplattenstecker, sowie in Buchsen für Mikroprozessoren. Typische Legierungen sind:

- Legierungen mit hoher Festigkeit
 K55 (CuNi3SiMg, C70250)
 K57 (CuNi1Co1Si, C70350)
 K73 (CuNi1ZnSi, C19005)
 K76 (CuNi1SiP, C19010)
 K78 (CuNi2Co1Si, C70350)
- Legierungen mit hoher Leitfähigkeit
 K75 (CuCrSiTi C18070)
 K82 (CuZr, C15100)
 K88 (CuCrAgFeTiSi, C18080)

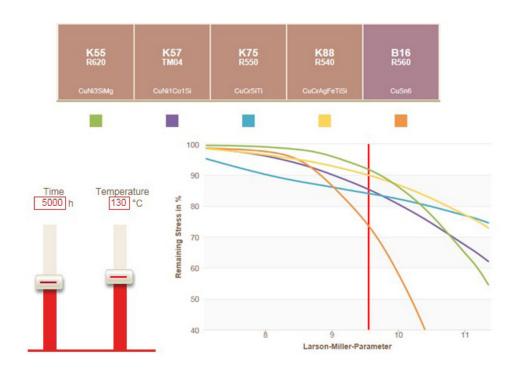


Abb. 3: Thermische Spannungsrelaxation im Vergleich zu Bronze. Quelle: www.wieland-alloywizard.com

Messing und Sondermessing

Messing ist eine Kupfer-Zink-Legierung mit einem Zinkgehalt von bis zu 38 %. Der Hauptvorteil von Messingen ist der vergleichsweise niedrige Metallpreis, da Zink deutlich billiger ist als Kupfer. Sondermessinge enthalten zusätzliche Elemente, die helfen, die Festigkeit und die thermischen Eigenschaften zu verbessern. Es gibt jedoch verschiedene Nachteile, wie z. B. die niedrige Temperaturbeständigkeit, die Anfälligkeit für Spannungsrisskorrosion und die Gefahr der Zinkausdampfung beim Lichtbogenschweißen. Daher wird Messing und Sondermessing nur in unkritischen Verbindungen eingesetzt.

- Typische Messinge sind Wieland-M30 (CuZn30, C26000) und Wieland-M36 (CuZn36, C27000).
- Typische Sondermessinge sind Wieland-S12 (CuZn9Sn3, C42500) und Wieland-S23 (CuZn23Al3Co, C68800).

Bronze

Phosphorbronzen sind Legierungen aus Kupfer und Zinn. Bronzen haben eine vorteilhafte Eigenschaftskombination von hoher Festigkeit, guter Verformbarkeit und einer gewissen Beständigkeit gegen thermische Relaxation, die eine Anwendung bis ca. 100 °C ermöglicht. So haben sich Bronzen als Basismaterialien in federnden Steckverbindern, Einpresskontakten und anderen Steckverbindern zur Signalübertragung sehr gut etabliert.

Typische Bronzelegierungen sind

- Wieland-B14 (CuSn4, C51100)
- Wieland-B16 (CuSn6, C51900)
- Wieland-B18 (CuSn8, C52100)

Feinkornbronze

Wieland SUPRALLOY® B14, B16, B18 sind die feinkörnigen Versionen der Standard-Phosphorbronzen CuSn4, CuSn6 und CuSn8. Sie haben die gleichen UNS-Nummern wie die Standardbronzen, siehe oben. Das Gefüge hat eine sehr feine Kornstruktur mit Korngrößen von 1–3 µm. Daraus resultieren höhere Festigkeiten bei gleichzeitig deutlich besserer Umformbarkeit. Bei gleicher Umformbarkeit ist die Streckgrenze von feinkörniger Bronze um ca. 120 MPa höher. Darüber hinaus kann die feinkörnige Bronze einer deutlich erhöhten Wechselbelastung standhalten (höhere Wechsellastbeständigkeit, höhere Vibrationsfestigkeit).

Kupfer-Nickel-Legierungen

Die Besonderheit der Kupfer-Nickel-Zinn-Legierungen ist die sehr hohe Festigkeit in Kombination mit sehr guter Relaxationsbeständigkeit sowie mit guter Umformbarkeit.

Typische Legierungen sind Wieland-L49 (CuNi9Sn2, C72500) und Wieland-L96 (CuNi9Sn6, ähnlich C72700). Wieland-L96 zielt auf Anwendungen ab, in denen traditionell CuBe1.7, CuBe2 und CuTi3 verwendet werden. Typische Anwendungen sind miniaturisierte Signalsteckverbinder, Federn in Mobiltelefonen sowie Erdungskontakte in der Unterhaltungselektronik und Datenkommunikation.

Werkstoffbezeichnungen

Wieland	DIN	EN		ASTM	JIS
	Kurzzeichen	Kurzzeichen	Nummer	UNS Nr.	JIS Nr.
Kupfer			<u></u>		
K09	OFE-Cu	_	CW009A	C10100	C1011
K11	OF-Cu	Cu-OF	CW008A	C10200	_
K12	SE-Cu 57	Cu-HCP	CW021A	C10300	_
K14	SECu- 58	Cu-PHC	CW020A	C10300	_
K15	SW-Cu	Cu-DLP	CW023A	C12000	C1201
K19	Sf-Cu	Cu-DHP	CW024A	C12200	C1220
K32	E-Cu 58	Cu-ETP	CW004A	C11000	C1100
	Kupferlegierungen				
K65	CuFe2P	CuFe2P	CW107C	C19400	_
K80	CuFe0,1P*	CuFe0,1P**	_	C19210	-
K81	CuSn0,15*	CuSn0,15	CW117c	C14415	_
Hochleistungsle		, , , , ,			
K55	CuNi3SiMg*	CuNi3SiMg**	_	C70250	-
K57	CuNi1Co1Si*	CuNiCo1Si**	_	C70350	-
K73	CuNi1ZnSi*	CuNi1ZnSi**	_	C19005	_
K75	CuCrSiTi	CuCrSiTi	_	C18070	_
K76	CuNi1SiP*	CuNi1SiP**	_	C19010	_
K78	CuNi2Co1Si*	CuNi2Co1Si**	_	C70350	_
K82	CuZr*	CuZr**	_	C15100	_
K88	CuCrAgFeTiSi*	CuCrAgFeTiSi**	_	C18080	_
Messing	<u>J</u>	3			
M05	CuZn5	CuZn5	CW500L	C21000	C2100
M10	CuZn10	CuZn10	CW501L	C22000	C2200
M15	CuZn15	CuZn15	CW502L	C23000	C2300
M20	CuZn20	CuZn20	CW503L	C24000	C2400
M30	CuZn30	CuZn30	CW505L	C26000	C2600
M33	CuZn33	CuZn33	CW506L	C26800	C2680
M36	CuZn36	CuZn36	CW507L	C27000	C2700
M37	CuZn37	CuZn37	CW508L	C27200	C2720
M38	CuZn38	CuZn38	CW508L	C27200	C2720
Sondermessing		Gazines	31,0002	32, 200	02,20
S12	CuSn3Zn9*	CuSn3Zn9	CW454K	C42500	C4250
S23	CuZn23Al3Co*	CuZn23Al3Co	CW703R	C68800	-
Bronze	0421120711000	0421120111000	O V V O O I V	200000	
B14	CuSn4	CuSn4	CW450K	C51100	C5111
B15	CuSn5*	CuSn5	CW451K	C51000	C5102
B16	CuSn6	CuSn6	CW452K	C51900	C5191
B18	CuSn8	CuSn8	CW452K	C52100	C5212
CuNi-Legierung			CVVTJJI		
L49	CuNi9Sn2	CuNi9Sn2	CW351	C72500	
			CAADOT	ähnlich C72700	_
L96	CuNi9Sn6	CuNi9Sn6		armich C/2/00	

^{*} Werkstoff in DIN nicht genormt

^{**} Werkstoff in EN nicht genormt

Profilgefrästes Band

Das Konturfräsen ist ein Verfahren zur Herstellung von Bändern mit einem profilierten Querschnitt. Diese Art von Band eröffnet neue Möglichkeiten, elektromechanische Bauteile mit unterschiedlich dicken Profilen herzustellen. Sie müssen nicht mehr aus verschiedenen Stanzteilen zusammengefügt werden, sondern können in einem Arbeitsgang gestanzt werden. Eine Prägung im Stanzwerkzeug ist nicht mehr erforderlich.

Detaillierte Informationen finden Sie in der Broschüre "Profilgefräste Bänder" auf unserer Website.

Die Feuerverzinnung ist ein wirtschaftliches Verfahren, um Kupfer und Kupferlegierungsbänder mit einer gut haftenden und multifunktionalen Zinnschicht zu versehen.

SnPUR® ist die Standardausführung der Feuerverzinnung. Sie besteht aus zwei Schichten, der intermetallischen Phase (IMP), die am Grundmetall haftet, und der Deckschicht aus reinem Zinn. Die IMP macht die Beschichtung beständig gegen Whiskerbildung. Die freie Zinnschicht sorgt für einen guten elektrischen Kontakt.

Die **SnTEM®**-Beschichtung besteht nur aus IMP und bietet somit eine höhere Oberflächenhärte. Sie wird eingesetzt, wenn reduzierte Steckkräfte und erhöhte Verschleißbeständigkeit erforderlich sind.

Die **SnTOP**®-Beschichtung enthält einen geringen Ag-Anteil, der den Einsatz bei Temperaturen bis zu 160 °C ermöglicht.

Detaillierte Informationen finden Sie in der Broschüre "Feuerverzinnte Bänder aus Kupferwerkstoffen" auf unserer Website.

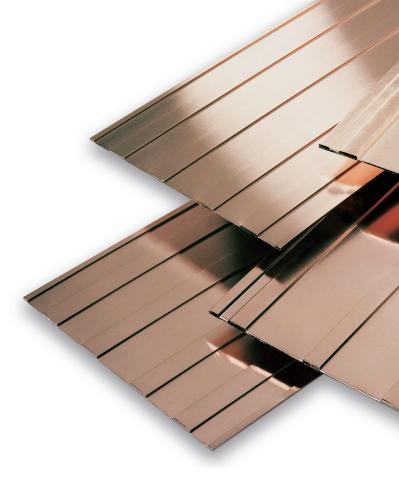
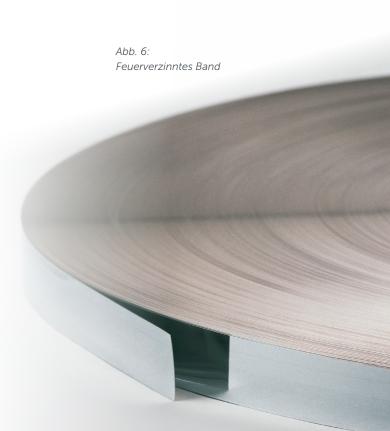



Abb. 5: Profilgefrästes Band

Masse und Toleranzen

Toleranzen

Die Verarbeitung der fertigen Bänder erfolgt auf hochpräzisen Werkzeugen, die besondere Anforderungen an die Toleranzen und die geometrischen Eigenschaften der Bänder stellen.

Dicken- und Breitentoleranzen können gegenüber den einschlägigen Normen auf engste Bereiche eingeschränkt werden.

Ebenso können in der Bandfertigung spezielle Maßnahmen ergriffen werden, um Formabweichungen wie Säbelförmigkeit, Rollkrümmung oder Querwölbung zu minimieren. Damit werden die besonderen Anforderungen des jeweiligen Stanzwerkzeugs berücksichtigt.

Dickentoleranz

Banddicke		Dickentoleranz			
mm		mm			
		Präzisionsonsstufe nach Kostenaufwand			
von	bis	1	II	III	
0,10*	0,30	+/-0,010	+/-0,007	+/-0,005	
0,30	0,50	+/-0,015	+/-0,010	+/-0,007	
0,50	0,80	+/-0,020	+/-0,015	+/-0,010	
0,80	1,30	+/-0,025	+/-0,020	+/-0,015	
1,30	1,50	+/-0,030	+/-0,025	+/-0,020	
1,50	Auf Anfrage				

Bandbreitentoleranz

Banddicke		Bandbreitentoleranz nach EN 1652			
mm		mm			
		Bandbreite			
von	bis	bis 50	von 50 bis 100	von 100 bis 200	
0,10*	1,0	+0,20 / -0	+0,30 / -0	+0,40 / -0	
1,0	2,0	+0,30 / -0	+0,40 / -0	+0,50 / -0	
2,0	2,5	+0,50 / -0	+0,60 / -0	+0,70 / -0	
2,5	3,0	+1,00 / -0	+1,10 / -0	+1,20 / -0	
3,0	4,0	+2,00 / -0	+2,30 / -0	+2,50 / -0	

Bei Banddicken bis 0,60 mm und Bandbreiten bis 100 mm sind auf Anfrage die halben Werte der oben angegebenen Toleranzen lieferbar.

Säbelförmigkeit

Bando	licke	Säbelförmigkeit nach EN 1654			
mm		mm			
		Bandbreite			
von	bis	> 3-6	> 6-10	> 10-20	>20-350
0,10*	0,50	12	8	4	2
0,50	1,00	-	10	6	3

Durch erhöhten Fertigungsaufwand lässt sich die Säbelförmigkeit auf die folgenden Toleranzen reduzieren:

Banddicke		Säbelförmigkeit nach EN 1654				
mm		mm				
		Bandbreite				
von	bis	> 3-6	> 6-10	> 10-20	>20-350	
0,10*	0,50	7	5	3	1,0	
0,50	1,00	-	6	4	1,5	

^{*} einschließlich 0.10

Lieferformen und Verpackungen

Ringe

Ringe sind die einfachste und deshalb preiswerteste Lieferform für Bänder. Sie werden liegend auf quadratischen oder runden Paletten verpackt, die in ihrer Größe an den Außendurchmesser der Ringe angepasst sind.

Spulen

Gespulte Bänder bestehen aus Ringen, die mit dem WIG-Verfahren aneinander geschweißt und anschließend auf einen Spulenkörper gewickelt werden. Dadurch ergeben sich wesentlich größere Aderlängen als bei einzelnen Ringen. Vorteil für den Verarbeiter sind geringere Nebenzeiten. Die Schweißstellen werden farblich markiert.

Wieland-MULTICOIL®

Beim Wieland-MULTICOIL sind alle Ringe in einem Ringstapel untereinander verbunden. So entsteht die größtmögliche Aderlänge. Sie erlaubt die Verarbeitung eines ganzen Ringstapels mit nur einem Anstanzen. Das Abwickeln kann auf vorhandenen Karussellhaspeln erfolgen, so dass keine Anlageninvestitionen erforderlich sind.

Die Vorteile:

- Verlängerte unterbrechungsfreie Maschinenlaufzeiten
- Verringerte Werkzeugbeanspruchung beim Anstanzen
- Erhöhte Produktivität

Abmessungen und Gewichte

 Banddicke
 Bandbreite

 0,20-0,80 mm
 10-60 mm

 0,81-1,20 mm
 10-40 mm

Palettengewicht max. 5 t

Wieland-FLEXIDRUM®

Auch die Spulenlogistik lässt sich noch weiter verbessern. Der Beitrag von Wieland heißt Wieland-FLEXIDRUM. Abnehmbare und wieder verwendbare Spulenflansche bleiben beim Kunden. Die Spulen werden flanschlos auf Hülsen angeliefert, so dass die Flansche ganz einfach ohne Anheben der Spule vor Ort montiert werden können. Die Hülsen können wiederverwendbar oder als Einweghülsen geliefert werden.

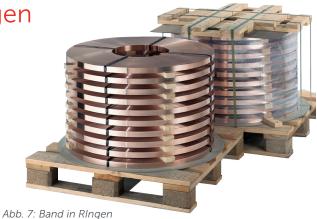


Abb. 8: Gespultes Band auf Spulen mit und ohne Flansche

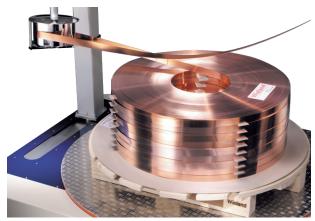


Abb. 9: Wieland-MULTICOIL

Abb. 10: Wieland-FLEXIDRUM

wieland