

wieland

Finned Tube Heat Exchanger

WRW

Diagrams with performance and pressure drop

The diagrams on the following pages will be helpful when choosing a heat exchanger to heat up a water tank by using water of a heating circuit.

The diagrams are based on our own tests with heating water and unforced convection in the tank.

With water as heating fluid, the capacity to be transferred is:

$$\dot{Q} = \dot{q} (t_1 - t_s)$$

The pressure drop in the heat exchanger is given in the diagram on.

With heating fluids (mixture) as used in solar power units, the capacity drops by the factor f_1 and the pressure drop rises by the factor f_2 :

$$\dot{Q}_{G} = f_{1} \cdot \dot{q} (t_{1} - t_{s})$$

$$\Delta p_{G} = f_{2} \cdot \Delta p$$

Legend			
Q (W)	Capacity to be transferred		
ġ (W/K)	Capacity per K of temperature difference $(t_1 - t_s)$		
t ₁ (°C)	Heating water temperature at inlet		
t ₂ (°C)	Heating water temperature at outlet		
t _s (°C)	Mean temperature of tankwater surrounding the heat exchanger		
['] √ (m³/h)	Heating water volume flow		
w (m/s)	Heating water velocity (limit 2.5 m/s)		
∆p (bar)	Pressure drop on heating water side		
f ₁ (-)	Correction factor for lower capacity when using other heating fluids		
f ₂ (-)	Correction factor for pressure drop increase when using other heating fluids		
Index G	Other heating fluid (mixture)		

Factors of a few commercial heating fluids (mixtures):

Mixture	f ₁	f ₂
Antifrogen N (concentration 20%)	0,95	1,15
Antifrogen N (concentration 40%)	0,85	1,35
PKL 90 (concentration 100%)	0,55	1,45

Example

A 300 l water tank is to be reheated through a solar power system filled with a 40 % Antifrogen N water mixture. The heating fluid enters the tank at 50 °C to reheat the 15 °C tank water. The volume flow is 1.0 m³/h and the maximum pressure drop in the heat exchanger is 0.3 bar.

a)

What is the capacity a specific heat exchanger can transfer to the tank water?

Solution to a)

Maximum pressure drop for a 40% Antifrogen N solution: 0.3 bar. Maximum pressure drop for water:

$$\Delta p = \frac{\text{max.} \, \Delta p_G}{f_2} = \frac{0.3}{1.35} = 0.22 \text{ bar}$$

Refer to pressure drop diagram:

 Δp max. 0.22 bar and V=1.0m³/h, hence WRW 23 or WRW 26:

Refer to diagrams WRW 23 and WRW 26:

 $V=1,0m^3/h$, and $t_1=50$ °C, hence

WRW 23: $\dot{q} = 410^{\circ} \text{ W/K}$

WRW 26: $\dot{q} = 440 \text{ W/K}$

Capacity: $\dot{Q}_G = f_1 \cdot q (t_1 - t_s)$: WRW 23: $\dot{Q}_G = 0.85 \cdot 410 (50 - 15) = approx. 12 kW$

WRW 26: $\dot{Q}_{c} = 0.85 \cdot 440 (50 - 15) = approx. 13 kW$

What is the pressure drop to be kept in mind when selecting the circulation pump?

Solution to b)

 $\Delta p_G = f_2 \cdot \Delta p$; (see Δp diagram)

WRW 23: $\Delta p_G = 1.35 \cdot 0.16 = 0.22$ bar

WRW 26: $\Delta p_c = 1.35 \cdot 0.19 = 0.26$ bar

c)

What is the return temperature of the heating fluid? Solution to c)

the heat exchanger, the heating fluid cools off by

$$\Delta t = \frac{\dot{Q}_{G}}{\dot{V} \cdot p \cdot C_{P}}$$

Physical properties for the 40% Antifrogen N heating fluid:

 $\sigma = 1.055 \text{ kg/m}^3$; Cp = 0,986 Wh/kgK

WRW 23:
$$\Delta t = \frac{12,000}{1.0 \cdot 1,055 \cdot 0.986} = 11,5 \text{ K}$$

Return temperature $t_2 = 50 - 11.5 = 38.5$ °C

WRW 26:
$$\Delta t = \frac{13,000}{1.0 \cdot 1,055 \cdot 0.986} = 12,5 \text{ K}$$

Return temperature $t_2 = 50 - 12.5 = 37.5$ °C

d)

What capacity can be transferred when the temperature of the water surrounding the heat exchanger is 45 °C?

Solution to d)

The water temperature around the heat exchanger is

45 °C, the capacity is only $\dot{Q}_G = f_1 \cdot \dot{q} (t_1 - t_s)$ WRW 23: $\dot{Q}_G = 0.85 \cdot 410 (50 - 45) = approx. 1.75 kW$

WRW 26: $\dot{Q}_{G} = 0.85 \cdot 440 (50 - 45) = approx. 1.9 kW$

wieland

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Deutschland info@wieland.com | wieland.com