

eco M59

CuZn42 - CW510L | Lead free brass according to RoHS

Material designation

EN	CuZn42
	CW510L
UNS	not standardized

Chemical composition*

Cu	58 %
Zn	balance
Pb	max. 0.1000 %

^{*}Reference values in % by weight

Material properties and typical applications

Eco M59 is a lead-free material which nevertheless has good machining properties due to its microstrucutre. M59 can therefore be used as a substitute for conventional lead-containing machining brass if a lead content of max. $0.1\,\%$ is necessary and the requirements regarding mechanical properties and corrosion resistance are not too high.

The material is lead free according to RoHS and ELV.

Physical properties*

Electrical	MS/m	13.9
conductivity	%IACS	24
Thermal conductivity	$W/(m \cdot K)$	139
Thermal expansion		
coefficient		
(0-300 °C)	10 ⁻⁶ /K	21.7
Density	g/cm³	8.41
Moduls of elasticity	GPa	107

Types of delivery

The BU Extruded Products supplies bars, wire, sections and tubes. Please get in touch with your contact person regarding the available delivery forms, dimensions and tempers.

*Reference values at roo	m temperature

Fabrication properties

Forming	
Machinability (CuZn39Pb3 = 100 %)	60 %
Capacity for being cold worked	poor
Capacity for being hot worked	excellent

Surface treatment Polishing

Heat treatment

mechanical	excellent
electrolytic	poor
Electroplating	excellent

Corrosion resistance

Machining brass is generally quite resistant against organic substances as well as neutral or alkaline compounds.

Stress corrosion cracking should be taken into account, especially in an ammoniacal atmosphere and whilst under mechanical stress. Dezincification in warm, acidic waters should also be taken into consideration.

boc
ir
ir

Hard soldering	good
Soft soldering	excellent

Melting range	870–900°
Hot working	650–750°
Soft annealing	450–550° 1–3 h
Thermal stress relieving	250–350° 1–3 h

Product standards

Rod	EN 12164
	EN 12165
Wire	EN 12166
Section	EN 12167
Hollow Rod	EN 12168

Trademarks

wieland ecoline

eco M59

CuZn42 - CW510L | Lead free brass

Mechani	cal pro	oerties a	according	to EN									
Round rods/polygonal rods acc. to EN 12164													
									Hardn	ess			
	mm		mm		MPa MPa A100 A11.3					А	НВ	НВ	
	from	to	from	to	min.	min.	max.	min.	min.	min.	min.	max.	
М	ć	all		all	as manufactured – without specified mechanical properties								
R360	6	80	5	60	360	-	320	-	15	20	_	_	
H090	6	80	5	60	-	-	-	-	-	-	90	125	
R430	2	40	2	35	430	220	-	6	8	10	_	_	
H110	2	40	2	35	-	-	-	-	-	-	110	160	
R500	2	14	2	10	500	350	-	_	3	5	-	_	
H135	2	14	2	10	-	-	-	-	-	-	135	-	

Round w	vires							ac	c. to EN	l 12166	
Temper	Diameter		Tensile strength R _m	Tensile strength R_m Yield strength $R_{p0.2}$ I		Elong	Elongation %			Hardness	
	mm		MPa	MPa	МРа		A100 A11.3 A		НВ		
	from	to	min.	min.	max.	min.	min.	min.	min.	max.	
М		all	as m	as manufactured – without specified mechanical properties					3		
R360	6	20	360	-	320	_	15	20	_	_	
H095	6	20	-	-	-	-	-	-	95	130	
R430	0.5	14	430	220	-	6	8	10	_	_	
H115	1.5	14	-	-	-	-	-	-	115	170	
R500	0.5	8	500	350	_	2	5	_	_	_	
H145	1.5	8	-	-	_	_	_	-	145	-	