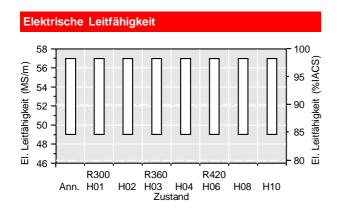


Wieland-K80

CuFeP | C19210

Die Legierung C19210 ist ein niedrig legierter Werkstoff, der zur Gruppe der Kupfer-Eisen-Legierungen zählt. Mit ihrem Eisengehalt von 0,1 % in Verbindung mit geringen Anteilen an Phosphor erreicht sie hohe elektrische Leitfähigkeiten, eine ausreichende mechanische Festigkeit und Erweichungsbeständigkeit bei höheren Temperaturen. Die Legierung wird gerne für Leadframes für Leistungstransistoren und ICs verwendet, ebenso für Steckerstifte, Batterieklemmen im Automobil und für Bauteile in der Elektroindustrie.

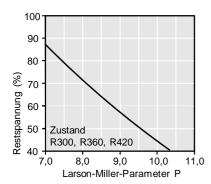

Zusammensetzung (Richtwerte)						
Fe	0,1 %					
Р	0,03 %					
Cu	Rest					

Physikalische Eigenschaften (Richtwerte bei Raumtemperatur)									
Elektrische Leitfähigkeit	53	MS/m	91	%IACS					
Wärmeleitfähigkeit	350	W/(m·K)	202	$Btu \cdot ft / (ft^2 \cdot h \cdot F)$					
Temperaturkoeffizient des elektrischen Widerstands*	3,2	10 ⁻³ /K	1,8	10 ⁻³ /℉					
Wärmeausdehnungskoeffizient*	17,0	10 ⁻⁶ /K	9,4	10 ⁻⁶ /F					
Dichte	8,89	g/cm ³	0,321	lb/in ³					
Elastizitätsmodul	125	GPa	18.000	ksi					
Spezifische Wärme	0,385	J/(g·K)	0,092	Btu/(lb·℉)					
Querkontraktionszahl	0,34		0,34						

^{*} Zwischen 0 und 300 ℃

Mechanische Eigenschaften (Werte in Klammern nur zur Information)									
Zustand	tand Zugfestigkeit R _m		0,2 %-Dehngrenze R _{p0,2}		Bruchdehnung A ₅₀	Härte HV			
	MPa	ksi	MPa	ksi	%				
R300	300-380	44-55	≥ 220	≥ 32	≥ 10	(80-110)			
R360	360-440	52-64	≥ 260	≥ 38	≥ 3	(100-130)			
R420	420-500	61-73	≥ 350	≥ 51	≥ 2	(120-150)			
Weich*	190-290	27-42	≥ 110	≥ 16	≥ 30				
H01*	300-365	43-53	≥ 135	≥ 20	≥ 20				
H02*	325-410	47-60	≥ 310	≥ 44	≥ 5				
H03*	355-425	52-62	≥ 345	≥ 50	≥ 4				
H04*	385-455	56-66	≥ 355	≥ 54	≥ 3				
H06*	410-480	60-70	≥ 400	≥ 58	≥ 2				
H08*	440-510	64-74	≥ 425	≥ 62	≥ 1				
H10*	≥ 455	≥ 66	≥ 440	≥ 64	≥ 1				

^{*} Nach ASTM B888



Wieland-K80

CuFeP | C19210

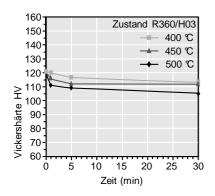
Thermische Spannungsrelaxation

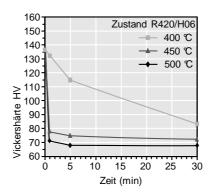
Restspannung nach thermischer Relaxation in Abhängigkeit vom Larson-Miller-Parameter P

(F. R. Larson, J. Miller, Trans ASME74 (1952) 765-775) berechnet

 $P = (20 + \log(t))^*(T + 273)^*0,001.$

Zeit t in Stunden, Temperatur T in ℃.


Beispiel: P = 9 ist äquivalent zu 1000 h/118 ℃.


Gemessen an walzharten Bandproben nach der Ringmethode. Die Gesamtrelaxation ist abhängig von der aufgebrachten Spannung. Zusätzlich wird sie durch Kaltverformung z. T. deutlich erhöht.

Biegewechselfestigkeit

Die Biegewechselfestigkeit ist definiert als die maximale Biegespannungsamplitude, bei der ein Werkstoff unter symmetrischer Wechselbelastung 10^7 Lastspiele erträgt ohne zu brechen. Sie ist abhängig vom geprüften Festigkeitszustand und beträgt etwa 1/3 der Zugfestigkeit R_m .

Erweichungsbeständigkeit

Vickershärte nach Wärmebehandlung (typische Werte)

Lieferbare Ausführungen

- Bänder in Ringen mit Außendurchmesser bis 1400 mm
- Gespulte Bänder mit
 Spulengewichten bis 1,5 t
- Multicoil bis 5 t
- Feuerverzinnte Bänder
- Profilgefräste Bänder

Lieferbare Abmessungen

- Banddicke ab 0,10 mm, dünnere Abmessungen auf Anfrage
- Bandbreite ab 3 mm, jedoch mindestens 10 x Banddicke

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA infona@wieland.com | wieland-rolledproductsna.com