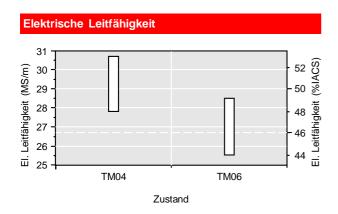
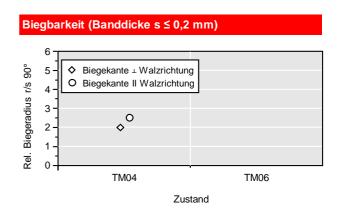


Wieland-K57

CuNi1Co1Si | C70350

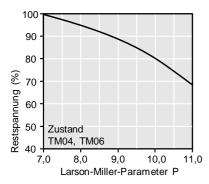

C70350 ist eine Hochleistungslegierung, die sehr hohe Festigkeiten erreichen kann. Homogen im Gefüge verteilte Silizid-Ausscheidungen führen zu diesen hohen Festigkeiten, zu hoher Leitfähigkeit und ausgezeichneter Beständigkeit gegen Spannungsrelaxation. C70350 kann alternativ zu den hochfesten Zuständen von C70250 verwendet werden. Es wird deshalb häufig eingesetzt für miniaturisierte Steckverbinder, CPU-Anschlüsse und Leiterplatten-Steckverbinder. Die Banddicken können bis unterhalb von 0,1 mm betragen.


Zusammensetzung (Richtwerte)				
Ni	1,5 %			
Co	1,1 %			
Si	0,6 %			
Cu	Rest			

Physikalische Eigenschaften (Richtwerte bei Raumtemperatur)								
Elektrische Leitfähigkeit	29	MS/m	50	%IACS				
Wärmeleitfähigkeit	200	W/(m·K)	115	Btu·ft/(ft²·h·℉)				
Temperaturkoeffizient des elektrischen Widerstands*	1,8	10 ⁻³ /K	1,0	10 ⁻³ / 				
Wärmeausdehnungskoeffizient*	17,6	10 ⁻⁶ /K	9,8	10 ⁻⁶ /F				
Dichte	8,82	g/cm ³	0,319	lb/in³				
Elastizitätsmodul	131	GPa	19.000	ksi				
Spezifische Wärme	0,390	J/(g·K)	0,093	Btu/(lb·℉)				
Querkontraktionszahl	0,34		0,34					

^{*} Zwischen 0 und 300 ℃

Mechanische Eigenschaften (Werte in Klammern nur zur Information)									
Zustand	tand Zugfestigkeit R _m		0,2 %-Dehi	ngrenze R _{p0,2}	Bruchdehnung A ₅₀	Härte HV			
	MPa	ksi	MPa	ksi	%				
TM04	770-900	112-131	750-850	109-124	≥ 4	(220-280)			
TM06	840-970	123-142	810-920	118-134	≥ 1	(240-300)			



Wieland-K57

CuNi1Co1Si | C70350

Thermische Spannungsrelaxation

Restspannung nach thermischer Relaxation in Abhängigkeit vom Larson-Miller-Parameter P

(F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) berechnet durch:

 $P = (20 + \log(t))^*(T + 273)^*0,001.$

Zeit t in Stunden, Temperatur T in ℃.

Beispiel: P = 9 ist äquivalent zu 1000 h/118 ℃.

Gemessen an thermisch entspannten Bandproben nach der Ringmethode.

Die Gesamtrelaxation ist abhängig von der aufgebrachten Spannung. Zusätzlich wird sie durch Kaltverformung z. T. deutlich erhöht.

Biegewechselfestigkeit

Die Biegewechselfestigkeit ist definiert als die maximale Biegespannungsamplitude, bei der ein Werkstoff unter symmetrischer Wechselbelastung 10⁷ Lastspiele erträgt ohne zu brechen. Sie ist abhängig vom geprüften Festigkeitszustand und beträgt etwa 1/3 der Zugfestigkeit R_m.

Lieferbare Ausführungen

- Bänder in Ringen mit Außendurchmesser bis 1400 mm
- Gespulte Bänder mit
 Spulengewichten bis 1,5 t
- Multicoil bis 5 t
- Feuerverzinnte Bänder
- Profilgefräste Bänder

Lieferbare Abmessungen

- Banddicken 0,08-0,20 mm, weitere Dicken auf Anfrage
- Bandbreite ab 3 mm, jedoch mindestens 10 x Banddicke

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA infona@wieland.com | wieland-rolledproductsna.com