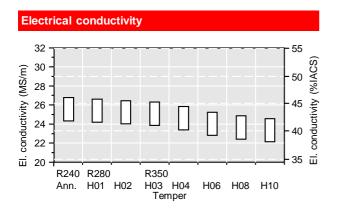
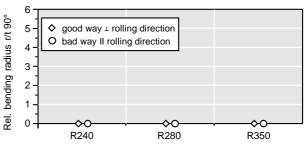
wieland

Wieland-M10

CuZn10 | C22000 | CW501L


Known for years as Commercial Bronze, this alloy derives its name from its rich bronze color. More a brass than actually a bronze, C22000 offers a unique set of properties that make it great for applications requiring deep drawing and resistance to corrosion including valves, buttons and pen ink tubes. Its appealing color also makes it ideal for architectural applications such as hinges, doorknobs, escutcheons and kick plates.

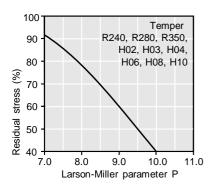
Chemical	composition (Reference)	Physical properties (Reference value	es at roon	n temperatur	re)	
Cu	90 %	Electrical conductivity	25	MS/m	44	%IACS
Zn	remainder	Thermal conductivity	189	W/(m·K)	109	Btu·ft/(ft²·h·℉)
		Coefficient of electrical resistance*	1.8	10 ⁻³ /K	1.0	10 ⁻³ /F
		Coefficient of thermal expansion*	18.2	10 ⁻⁶ /K	10.1	10⁻ ⁶ /℉
		Density	8.80	g/cm ³	0.318	lb/in ³
		Modulus of elasticity	117	GPa	17,000	ksi
		Specific heat	0.380	J/(g·K)	0.091	Btu/(lb·℉)
		Poisson's ratio	0.34		0.34	


* Between 0 and 300 °C

Temper	Tensile strength R _m		Yield strength R _{p0.2}		Elongation A ₅₀	Hardness HV	
	MPa	ksi	MPa	ksi	%		
R240	240-290	33-41	≤ 140	≤ 19	≥ 36	(50-80)	
R280	280-360	39-51	≥ 200	≥ 29	≥ 13	(80-110)	
R350	≥ 350	≥ 49	≥ 290	≥ 41	≥ 4	(105-140)	
Annealed	250-290	36-42	(85)	(12)	(47)		
H01*	275-345	40-50	(230)	(33)	(27)		
H02*	325-395	47-57	(325)	(47)	(12)		
H03*	360-425	52-62	(370)	(54)	(6)		
H04*	395-455	57-66	(400)	(58)	(4)		
H06*	440-495	64-72	(435)	(63)	(2)		
H08*	475-530	69-77	(470)	(68)	(≥ 1)		
H10*	495-550	72-80	(485)	(70)	(≤ 1)		

* According to ASTM B36

Bendability (Strip thickness t ≤ 0.5 mm)

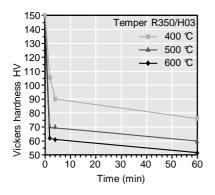


Temper

Wieland-M10

CuZn10 | C22000 | CW501L

Thermal stress relaxation



Stress remaining after thermal relaxation as a function of Larson-Miller parameter P (F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) given by: $P = (20 + log(t))^*(T + 273)^*0.001$. Time t in hours, temperature T in °C. Example: P = 9 is equivalent to 1,000 h/118 °C. Measured on rolled to temper specimens parallel to rolling direction. Total stress relaxation depends on the applied stress level. Furthermore, it is increased to some extent by cold deformation.

Fatigue strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10^7 load cycles under symmetrical alternate load without breaking. It is dependent on the temper tested and is about 1/3 of the tensile strength R_m .

Softening resistance

Types and formats available

- Standard coils with outside diameters up to 1,400 mm
- Traverse-wound coils with drum weights up to 1.5 t
- Multicoil up to 5 t

- Hot-dip tinned strip
- Contour-milled strip
- Sheet
- Strip and sheet with protective coating

Vickers hardness after heat treatment (typical values)

Dimensions available

- Strip thickness from 0.10 mm, thinner gauges on request
- Strip width from 3 mm, however min. 10 x strip thickness

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA <u>infona@wieland.com</u> | wieland-rolledproductsna.com

This printed matter is not subject to revision. No claims can be derived from it unless there is evidence of intent or gross negligence. The product characteristics are not guaranteed and do not replace experts' advice.