

wieland

Developed by Olin Metals Research Laboratories, C688 is a high strength copper-zinc alloy modified with aluminum and cobalt. With exceptional strength and non-directional formability C688 can be used in applications including: high end wiring devices, automotive connectors and electronic interconnections. Offering improved stress relaxation resistance compared to C260 this alloy offers improved reliability but designers considering applications with elevated service temperatures should also consider C4252 or C7025.

Chemical C	omposition		
Copper ¹	Remainder		
Aluminum	3.0-3.8%		
Cobolt	0.25-0.55%		
Zinc	21.3-24.1%		
Iron	0.20% Max		
Lead	0.05% Max		
¹ Cu + Named Elements, 99.5% mir	1		

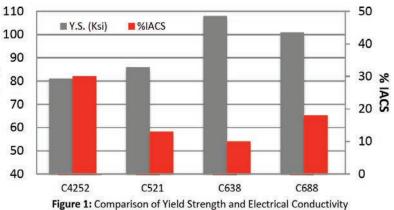


Figure 1: Comparison of Yield Strength and Electrical Conductivity performance of select Hard temper high strength connector materials.

Physical Properties					
	English Units	Metric Units			
Density	0.296 lb/in ³ @ 68ºF	8.20 g/cm ³			
Thermal Conductivity	47.0 BTU-ft/ft ² -hr-ºF	81 W/mºK			
Electrical Resistivity	58.0 ohm circ mils/ft	9.6 microhm-cm			
Electrical Conductivity (annealed)	18% IACS*	0.104 megamho/cm			
Modulus of Elasticity	16,800,000 psi	116 kN/mm ²			
Thermal Capacity(Specific Heat)	0.090 Btu/lb/Fº @ 68ºF	377.1 J/kg · ⁰C @ 20ºC			
Coeff. Of Thermal Expansion					
68-572°F (20-300°C)	10.1 PPM/ºF	18.18 PPM/ºC			
*International Annealed Copper Standard					

		Mech	nanical Pro	operties			
Temper ¹	Tensile	Tensile Strength		strength ²	% Elongation ²	Typical 90º Bend Formability	
	ksi	N/mm ²	ksi	N/mm ²		GW/BW ³	
Annealed	77-87	530-600	52	360	35	-	-
1/4 Hard	87-101	600-695	76	525	19	0.8	0.8
1/2 Hard	97-112	670-770	92	635	9	1.0	1.0
Hard	106-120	730-825	101	695	4	1.5	1.5
Extra Hard	113-127	780-875	108	745	2	3.0	3.0
Spring Hard	123-133	850-915	114	785	1 min	4.0	5.0
Extra Spring	125 min	860 min	112 min	770 min	2 max		

Mechanical properties subject to change. All tempers listed are made to a Tensile Strength specification unless otherwise noted.

² Nominal Values ³ DATA FOR REFERENCE ONLY. R/T = Bend Radius/Material Thickness <0.016" (0.4mm) thick, 11/16 (17.5mm) wide.

Wieland believes the information contained herein to be reliable. However, the technical information is given by Wieland without charge, and the user shall employ such information at his/her own discretion and risk. Wieland assumes no responsibility for the results obtained or damages incurred from the use of such information.