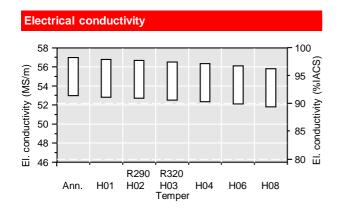


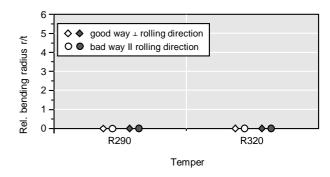
Wieland-K82

CuZr | C15100

CuZr is precipitation hardened and thus exhibits excellent resistance to stress relaxation at elevated temperatures as well as a combination of high strength and excellent bend formability. CuZr is a versatile material solution that is used in a wide variety of applications including high current connectors, power distribution systems and automotive electric vehicle components.

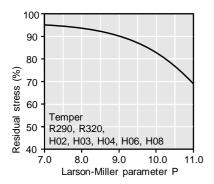

Chemical c	mical composition (Reference)				
Zr	0.1 %				
Cu	remainder				

Physical properties (Reference value	es at roon	n temperatur	e)	
Electrical conductivity	55	MS/m	95	%IACS
Thermal conductivity	360	W/(m·K)	208	$Btu \cdot ft / (ft^2 \cdot h \cdot \P)$
Coefficient of electrical resistance*	3.7	10 ⁻³ /K	2.1	10 ⁻³ /F
Coefficient of thermal expansion*	17.7	10 ⁻⁶ /K	9.8	10 ⁻⁶ /℉
Density	8.94	g/cm ³	0.323	lb/in³
Modulus of elasticity	121	GPa	17,500	ksi
Specific heat	0.385	J/(g·K)	0.092	Btu/(lb⋅F)
Poisson's ratio	0.34		0.34	


^{*} Between 0 and 300 ℃

Temper	Tensile strength R _m		Yield stre	ength R _{p0.2}	Elongation A ₅₀	Hardness HV
	MPa	ksi	MPa	ksi	%	
R290	290-360	42-52	≥ 260	≥ 38	≥ 10	(90-110)
R320	320-390	46-57	≥ 310	≥ 45	≥ 5	(100-120)
Annealed*	255-290	37-42	≥ 60	≥ 9	≥ 35	
H01*	275-310	40-45	≥ 180	≥ 26	≥ 11	
H02*	295-350	43-51	≥ 240	≥ 35	≥ 4	
H03*	325-385	47-56	≥ 310	≥ 45	≥ 2	
H04*	365-425	53-62	≥ 350	≥ 51	≥ 2	
H06*	405-450	59-65	≥ 395	≥ 57	≥ 1	
H08*	440-490	64-71	≥ 425	≥ 62	≥ 1	

^{*} According to ASTM B888


Bendability (Strip thickness t ≤ 0.5 mm) • • 90° • • 180°

Wieland-K82

CuZr | C15100

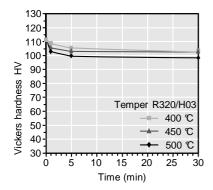
Thermal stress relaxation

Stress remaining after thermal relaxation as a function of Larson-Miller parameter P

(F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) given by: $P = (20 + \log(t))^*(T + 273)^*0.001$.

Time t in hours, temperature T in ℃.

Example: P = 9 is equivalent to 1,000 h/118 °C.


Measured on stress relief annealed specimens parallel to rolling direction.

Total stress relaxation depends on the applied stress level. Furthermore, it is increased to some extent by cold deformation.

Fatigue strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10^7 load cycles under symmetrical alternate load without breaking. It is dependent on the temper tested and is about 1/3 of the tensile strength $R_{\rm m}$.

Softening resistance

Vickers hardness after heat treatment (typical values)

Types and formats available

- Standard coils with outside diameters up to 1,400 mm
- Traverse-wound coils with drum weights up to 1.5 t
- Multicoil up to 5 t
- Hot-dip tinned strip
- Contour-milled strip

Dimensions available

- Strip thickness from 0.10 mm, thinner gauges on request
- Strip width from 3 mm, however min. 10 x strip thickness

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA infona@wieland.com | wieland-rolledproductsna.com