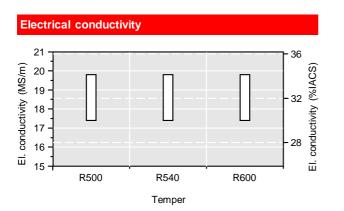
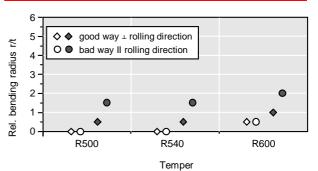
wieland

Wieland-B31

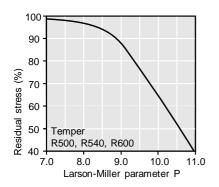

CuSn2Fe0.1P | C50715

C50715 is a well established alloy for signal connectors and was introduced by the Japanese industry. It provides good formability and a combination of functional properties similar to phosphor bronzes. However, this alloy contains less tin, which increases the electrical conductivity at the sacrifice of thermal stability.


Chemical composition (Reference)				
Sn	2 %			
Fe	0.1 %			
Р	0.03 %			
Cu	Remainder			

Physical properties (Reference values at room temperature)							
Electrical conductivity	18	MS/m	30	%IACS			
Thermal conductivity	150	W/(m·K)	87	Btu·ft/(ft²·h·℉)			
Coefficient of electrical resistance*	1.4	10 ⁻³ /K	0.8	10⁻³/℉			
Coefficient of thermal expansion*	17.6	10 ⁻⁶ /K	9.8	10 ⁻⁶ /℉			
Density	8.89	g/cm ³	0.321	lb/in ³			
Modulus of elasticity	123	GPa	17,800	ksi			
Specific heat	0.377	J/(g·K)	0.090	Btu/(lb·℉)			
Poisson's ratio	0.34		0.34				
* Between 0 and 300 °C							

Mechanical properties (values in brackets are for information only)							
Temper	Tensile strength R _m		Yield strength R _{p0.2}		Elongation A ₅₀		
	MPa	ksi	MPa	ksi	%		
R500	500-580	73-84	≥ 460	≥ 67	≥ 6		
R540	540-620	78-90	≥ 500	≥ 73	≥ 5		
R600	600-680	87-99	≥ 560	≥ 81	≥ 3		


Bendability (Strip thickness t \leq 0.5 mm) $\diamond \circ$ 90° $\diamond \circ$ 180°

Wieland-B31

CuSn2Fe0.1P | C50715

Thermal stress relaxation

Stress remaining after thermal relaxation as a function of Larson-Miller parameter P

(F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) given by: P = (20 + log(t))*(T + 273)*0.001.

Time t in hours, temperature T in \mathcal{C} .

Example: P = 9 is equivalent to 1,000 h/118 °C.

Measured on stress relief annealed specimens parallel to rolling direction.

Total stress relaxation depends on the applied stress level.

Furthermore, it is increased to some extent by cold deformation.

Fatigue strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10^7 load cycles under symmetrical alternate load without breaking. It is dependent on the temper tested and is about 1/3 of the tensile strength R_m .

Types and formats available

- Standard coils with outside diameters up to 1,400 mm
- Traverse-wound coils with drum weights up to 1.5 t
- Multicoil up to 5 t
- Hot-dip tinned strip
- Contour-milled strip

Dimensions available

- Strip thickness from 0.10 mm, thinner gauges on request
- Strip width from 3 mm, however min. 10 x strip thickness

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com
Wieland.com | Wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA <u>infona@wieland.com</u> | wieland-rolledproductsna.com

This printed matter is not subject to revision. No claims can be derived from it unless there is evidence of intent or gross negligence. The product characteristics are not guaranteed and do not replace experts' advice.