

Wieland-N29

CuNi18Zn20 | Bleifreies Neusilber

Werkstoffbezeichnung

EN	CuNi18Zn20
	CW409J
UNS	nicht genormt

Zusammensetzung*

Cu	62 %
Ni	18 %
Pb	< 0,01 %
Zn	Rest

^{*}Richtwerte in Gew. %

Werkstoffeigenschaften und typische Anwendungen

Wieland-N29 ist ein bleifreies Neusilber, das auf Grund seines hohen Nickelgehaltes eine silberhelle Farbe aufweist und gut anlaufbeständig ist. Der Werkstoff ist sehr gut kaltumformbar, da es sich um einen einphasigen Werkstoff handelt; zudem lassen sich sehr hohe Festigkeitswerte erzielen. Charakteristisch für Neusilber ist die gute Temperaturbeständigkeit, wie sie bei Verbindungsarbeiten (Schweissen, Löten) notwendig ist. Wieland-N29 findet seine Anwendung vor allem in der Brillenindustrie (Brillenbügel, Scharniere).

Die Werkstoffzusammensetzung erfüllt die Anforderungen der CPSIA.

Physikalische Eigenschaften* Flektrische MS/m 3.6

LICITATION	1.10/111	5,0	
Leitfähigkeit	%IACS	6	
Wärmeleitfähigkeit	$W/(m\!\cdot\! K)$	30	
Wärmeausdehnungs-			
koeffizient			
(0-300 °C)	10 ⁻⁶ /K	16,5	
Dichte	g/cm³	8,73	
F-Modul	GPa	132	

^{*}Richtwerte bei Raumtemperatur

Lieferformen

Die BU Extruded Products liefert Stangen, Drähte, Profile und Rohre. Bitte fragen Sie Ihren Ansprechpartner nach den lieferbaren Formen, Abmessungen und Zuständen.

Bearbeitungshinweise

Bearbeitungshinweise)			
Formgebung		Oberflächenbeha	andlung	
Zerspanbarkeit 25 % CuZn39Pb3 = 100 %)	Polieren mechanisch	sehr gut		
Kaltumformen	sehr gut	elektrolytisch	sehr gut	
		Galvanisieren	sehr gut	
Warmumformen	mittel			

Korrosionsbeständigkeit

Neusilber weisen allgemein eine gute Korrosionsbeständigkeit gegen atmosphärische Einflüsse, organische Substanzen (Schweiss, Umwelteinflüsse) sowie alkalische und neutrale Salzlösungen auf.

Verbindungsarbeiten	
Widerstands- schweissen (stumpf)	sehr gut
Schutzgas- schweissen	mittel
Gasschweißen	mittel
Hartlöten	sehr gut
Weichlöten	sehr gut

Wärmebehandlung	
Schmelzbereich	1.050-1.100 °C
Warmumformen	900-980 °C
Weichglühen	600-750 °C 1-3 h
Thermisch Entspannen	300-400 °C 1-3 h

Produktnormen	
Stange	EN 12163
Draht	EN 12166
Profil	EN 12167
Rohr	EN 12449

Handelsmarken

Für detailliertere Informationen zu unseren Scriptoline Produkten fragen Sie bitte nach unserem Prospekt.

Wieland-N29

CuNi18Zn20 | Bleifreies Neusilber

Mechanis	sche Eig	genscha	ften nach	EN EN								
Rundstar	ngen/re	gelmäßi	ge Kants	tangen							nach El	N 12163
Zustand	Durch	messer	Schlüsse	elweite	Zugfestigkeit R _m	Dehngren	ze R _{p0,2}	Bruch	dehnun	g %	Härte	
	mm		mm		MPa	MPa		A100	A11,3	Α	НВ	
	von	bis	von	bis	min.	min.	max.	min.	min.	min.	min.	max.
М	а	lle	a	ılle	wie get	ertigt – ohn	e Vorgabe mechanischer Werte					
R400	2	50	2	50	400	_	290	25	30	35	-	-
H095	2	50	2	50	-	-	-	-	-	-	95	135
R480	2	40	2	40	480	250	_	7	9	11	-	_
H140	2	40	2	40	-	-	-	-	-	-	140	175
R580	2	10	2	10	580	400	_	_	_	_	-	-
H170	2	10	2	10	-	-	-	-	-	-	170	210
R660	2	4	2	4	660	550	_	_	_	_	_	_
H200	2	4	2	4	_	-	-	-	-	-	200	-

Rechteck	kstangen								nach El	12167
Zustand Dicke		ke Zugfestigkeit R _m		Dehngrenze R _{p0,2}		Bruchdehnung %			Härte	
	mm		MPa	MPa		A100	A11,3	Α	НВ	
	von	bis	min.	min.	max.	min.	min.	min.	min.	max.
М	a	ille	wie gef	ertigt – ohne	e Vorgabe m	nechanis	cher We	erte		
R480	6	40	480	250	_	9	11	_	_	_
H140	6	40	-	_	-	-	-	140	175	125
R580	3	6	580	400	_	-	-	_	-	-
H170	3	6	_	_	_	-	_	170	210	165

Rohre	Nohre nach EN 12449									
Zustand	Wanddicke	Zugfestigkeit R _m	Dehngre	nze R _{p0,2}	Bruchdehnung %	Härte	Härte			
	mm	MPa	MPa		A100	HV		НВ		
	max.	min.	min.	max.	min.	min.	max.	min.	max.	
М	20		wie gefert	igt – ohne \	Vorgabe mechanischer	Werte		_		
R370	10	370	-	290	40	-	_	_	_	
H080	10	-	-	-	_	80	115	75	110	
R440	5	440	290	_	20	-	-	-	-	
H115	5	-	-	-	-	115	150	110	145	
R540	3	540	450	_	5	-	-	-	-	
H145	3	-	-	_	-	145	-	140	-	

Runddräl	hte								nach E	N 1216
Zustand	Durchme	sser	Zugfestigkeit R _m	Dehngr	enze R _{p0,2}	Bruch	dehnun	g %	Härte	
	mm		MPa	MPa		A100	A11,3	Α	НВ	
	von	bis	min.	min.	max.	min.	min.	min.	min.	max.
М		alle	wie	e gefertigt – o	hne Vorgabe	e mechani:	scher W	erte		
R400	1,5	20	400	_	290	25	30	35	-	_
H105	1,5	20	-	-	-	-	-	-	105	145
R480	0,1	12	480	250	_	7	9	11	_	_
H145	1,5	12	-	-	-	-	-	-	145	185
R580	0,1	10	580	400	_	2	3	5	_	_
H180	1,5	10	-	-	-	-	-	-	180	220
R660	0,1	4	660	550	_	-	_	_	_	-
H210	1,5	4	-	-	-	-	_	-	210	-
R800	0,1	1,5	800	750	_	_	_	_	_	_
H230	-	1,5	-	-	-	-	-	-	230	_