

Wieland-Z29

CuZn39Pb2 | Machining brass

Material designation EN CuZn39Pb2 CW612N UNS C37700

Cu 59.5 % Pb 2.3 % Zn balance

*Reference values in % by weight

Material properties and typical applications

Wieland-Z29 is a brass with excellent machining and good hot-drop forging properties. It can be sufficiently cold worked. Due to its good ductility Wieland-Z29 is also often used for the production of connectors with high torque requirements.

Physical properties* Electrical MS/m 13.9 conductivity %IACS 24 Thermal conductivity W/(m·K) 109 Thermal expansion coefficient (0–300 °C) 10-6/K 21.1 Density g/cm³ 8.44

Moduls of elasticity GPa 102 *Reference values at room temperature

Types of delivery

The BU Extruded Products supplies bars, wire, sections and tubes. Please get in touch with your contact person regarding the available delivery forms, dimensions and tempers.

Fabrication properties		
Forming	Surface treatment	
Machinability (CuZn39Pb3 = 100 %)	90 %	Polishing
Capacity for being cold worked	poor	mechanical electrolytic
Capacity for being hot worked	excellent	Electroplating

Joining	
Resistance welding (butt weld)	fair
Inert gas shielded arc welding	poor
Gas welding	poor
Hard soldering	fair
Soft soldering	excellent

Heat treatment	
Melting range	880-895°C
Hot working	650-800 °C
Soft annealing	450-600 °C 1-3 h
Thermal stress relieving	200-300 °C 1-3 h

good

poor excellent

Corrosion resistance

Machining brass is generally quite resistant against organic substances as well as neutral or alkaline compounds.

Stress corrosion cracking should be taken into account, especially in an ammoniacal atmosphere and whilst under mechanical stress. Dezincification in warm, acidic waters should also be taken into consideration.

Product standards							
Rod	EN 12164						
	EN 12165						
Wire	EN 12166						
Section	EN 12167						
Hollow rod	EN 12168						

Wieland-Z29

CuZn39Pb2 | Machining brass

Round ro	ods/pol	ygonal	rods							a	cc. to El	N 12164
Temper	Diame	ter	Width a	cross flats	Tensile strength R_m Yield strength $R_{p0.2}$		Elongation %			Hardness		
	mm		mm mm MPa	MPa	MPa	MPa A100 A11.3 A			Α	НВ		
	from	to	from	to	min.	min.	max.	min.	min.	min.	min.	max.
М	ć	all		all	as manufactured – without specified mechanical properties							
R360	6	80	5	60	360	-	300	-	15	20	_	_
H070	6	80	5	60	-	-	-	-	-	-	70	100
R410	2	40	2	35	410	230	-	8	10	12	_	_
H100	2	40	2	35	-	-	-	-	-	-	100	145
R500	2	14	2	10	500	350	_	3	5	8	_	_
H120	2	14	2	10	_	_	_	_	_	_	120	

Rectang	T							u	acc. to EN 12167		
Temper	Thickr	ness	Tensile strength R _m			Elonga	Elongation %			Hardness	
	mm		MPa	MPa		A100	A100 A11.3		НВ		
	from	to	min.	min.	max.	min.	min.	min.	min.	max.	
М		all	as ma	anufactured – w	ithout specifi	ed mecha	anical pr	opertie	S		
R360	3	20	360	_	300	10	15	20	_	_	
H070	3	20	-	-	-	-	-	-	70	100	
R410	3	10	410	220	-	8	10	12	_	_	
H100	3	10	-	-	-	-	-	-	100	145	
R500	3	10	500	350	-	2	5	8	_	-	
H120	3	10	_	_	_	_	-	_	120	_	

Round wires acc. to EN 12166											
Temper	Diameter		Tensile strength R_m Yield strength $R_{p0.2}$ El				Elongation %			Hardness	
	mm		MPa	MPa		A100	A11.3	Α	НВ		
	from	to	min.	min.	max.	min.	min.	min.	min.	max.	
М		all	as manufactured – without specified mechanical properties								
R360	0,5	20	360	_	300	10	15	20	_	_	
H080	1,5	20	-	-	-	-	-	-	80	110	
R410	0,5	14	410	220	-	8	10	12	_	_	
H100	1,5	14	-	-	-	_	_	-	100	160	
R500	0,5	8	500	350	_	2	5	_	-	-	
H130	1,5	8	-	-	-	-	-	-	130	-	