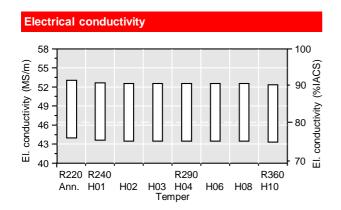
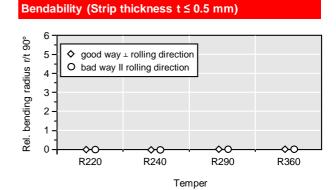


Wieland-K19

Cu-DHP | C12200 | CW024A

Cu-DHP is a copper that is deoxidized with phosphorus and is excellent for deep drawing and other applications requiring severe forming. Another advantage includes zero risk to hydrogen embrittlement when heated for brazing, welding, soldering or annealing. Cu-DHP is primarily used in pipe caps, brazed heat exchangers and other applications that require high temperature joining or severe forming. It can also be used in many electrical applications such as heating elements and wire connectors.

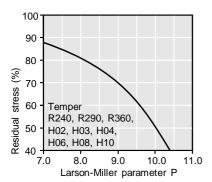

Chemical composition (Reference) Cu ≥ 99.90 % P 0.015-0.040 %


Physical properties (Reference values at room temperature)								
Electrical conductivity	46	MS/m	79	%IACS				
Thermal conductivity	340	W/(m·K)	196	Btu·ft/(ft²·h·℉)				
Coefficient of electrical resistance*	3.4	10 ⁻³ /K	1.9	10 ⁻³ /℉				
Coefficient of thermal expansion*	17.7	10 ⁻⁶ /K	9.8	10 ⁻⁶ /F				
Density	8.94	g/cm ³	0.322	lb/in ³				
Modulus of elasticity	115	GPa	17,000	ksi				
Specific heat	0.386	J/(g·K)	0.092	Btu/(lb·℉)				
Poisson's ratio	0.34		0.34					

^{*} Between 0 and 300 ℃

Mechanical properties (values in brackets are for information only)								
Temper	Tensile str	Tensile strength R _m		ngth R _{p0.2}	Elongation A ₅₀	Hardness HV		
	MPa	ksi	MPa	ksi	%			
R220	220-260	32-38	≤ 140	≤ 20	≥ 33	(40-70)		
R240	240-300	35-44	≥ 180	≥ 26	≥ 8	(65-95)		
R290	290-360	42-52	≥ 250	≥ 36	≥ 4	(90-110)		
R360	≥ 360	≥ 52	≥ 320	≥ 46	≥ 2	(≥ 110)		
Annealed	180-260	26-38	(70)	(10)	(35)			
H01*	235-290	34-42	(220)	(32)	(23)			
H02*	255-315	37-46	(255)	(37)	(20)			
H03*	285-345	41-50	(295)	(43)	(14)			
H04*	295-360	43-52	(310)	(45)	(9)			
H06*	325-385	47-56	(345)	(50)	(4)			
H08*	345-400	50-58	(360)	(52)	(3)			
H10*	≥ 360	≥ 52	(≥ 350)	(≥ 51)	(≤ 3)			

^{*} According to ASTM B152



Wieland-K19

Cu-DHP | C12200 | CW024A

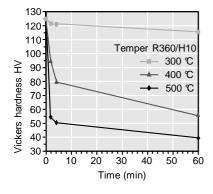
Thermal stress relaxation

Stress remaining after thermal relaxation as a function of Larson-Miller parameter P

(F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) given by: $P = (20 + \log(t))^*(T + 273)^*0.001$.

Time t in hours, temperature T in \mathbb{C} .

Example: P = 9 is equivalent to 1,000 h/118 °C.


Measured on rolled to temper specimens parallel to rolling direction.

Total stress relaxation depends on the applied stress level. Furthermore, it is increased to some extent by cold deformation.

Fatigue strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10^7 load cycles under symmetrical alternate load without breaking. It is dependent on the temper tested and is about 1/3 of the tensile strength $R_{\rm m}$.

Resistance to softening

Vickers hardness after heat treatment (typical values)

Types and formats available

- Standard coils with outside diameters up to 1,400 mm
- Traverse-wound coils with drum weights up to 1.5 t
- Multicoil up to 5 t
- Hot-dip tinned strip
- Contour-milled strip

Dimensions available

- Strip thickness from 0.10 mm, thinner gauges on request
- Strip width from 3 mm, however min. 10 x strip thickness

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA infona@wieland.com | wieland-rolledproductsna.com