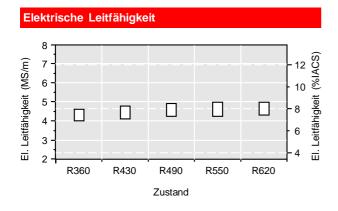
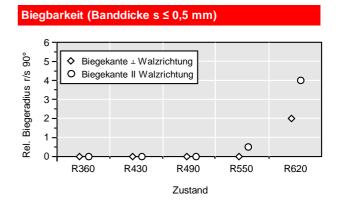


Wieland-N12

CuNi12Zn24 | C75700 | CW403J

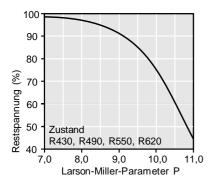

Die Neusilber-Legierung CuNi12Zn24 vereint mechanische Festigkeit, gute Verformungseigenschaften und Korrosionsbeständigkeit, so dass sie in Form von Federelementen und Steckverbindern unter rauen Umgebungsbedingungen zum Einsatz kommt. Auf Grund der ausgezeichneten Kaltverformbarkeit des Werkstoffs wird er ebenso für Tiefziehteile verwendet. Der natürliche Farbton der Legierung ist dem von Silber sehr ähnlich, weshalb sie häufig für Besteck und Tafelgeschirr, ggf. versilbert, eingesetzt wird.


Zusammensetzung (Richtwerte)					
Cu	64 %				
Ni	12 %				
Zn	Rest				

Physikalische Eigenschaften (Richtwerte bei Raumtemperatur)									
Elektrische Leitfähigkeit	4,4	MS/m	8	%IACS					
Wärmeleitfähigkeit	40	$W/(m\cdot K)$	23	Btu·ft/(ft²·h·℉)					
Temperaturkoeffizient des elektrischen Widerstands*	0,4	10 ⁻³ /K	0,2	10 ⁻³ /℉					
Wärmeausdehnungskoeffizient*	16,2	10 ⁻⁶ /K	9,0	10 ⁻⁶ /℉					
Dichte	8,67	g/cm ³	0,313	lb/in³					
Elastizitätsmodul	125	GPa	18.000	ksi					
Spezifische Wärme	0,380	J/(g·K)	0,091	Btu/(lb⋅℉)					
Querkontraktionszahl	0,34		0,34						

^{*} Zwischen 0 und 300 ℃

Mechanische Eigenschaften (Werte in Klammern nur zur Information)									
Zustand Zugfestigkeit F		eit R _m	0,2 %-Dehngrenze R _{p0,2}		Bruchdehnung A ₅₀	Härte HV			
	MPa	ksi	MPa	ksi	%				
R360	360-430	52-62	≤ 230	≤ 33	≥ 35	(80-110)			
R430	430-510	62-74	≥ 230	≥ 33	≥ 8	(110-150)			
R490	490-580	71-84	≥ 400	≥ 58	≥ 5	(150-180)			
R550	550-640	80-93	≥ 480	≥ 70	-	(170-200)			
R620	620-710	90-103	≥ 580	≥ 84	-	(190-220)			



Wieland-N12

CuNi12Zn24 | C75700 | CW403J

Thermische Spannungsrelaxation

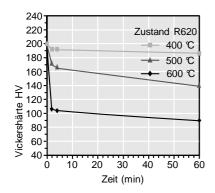
Restspannung nach thermischer Relaxation in Abhängigkeit vom Larson-Miller-Parameter P

(F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) berechnet durch:

 $P = (20 + \log(t))^*(T + 273)^*0,001.$

Zeit t in Stunden, Temperatur T in ℃.

Beispiel: P = 9 ist äquivalent zu 1000 h/118 ℃.


Gemessen an thermisch entspannten Bandproben nach der Ringmethode.

Die Gesamtrelaxation ist abhängig von der aufgebrachten Spannung. Zusätzlich wird sie durch Kaltverformung z. T. deutlich erhöht.

Biegewechselfestigkeit

Die Biegewechselfestigkeit ist definiert als die maximale Biegespannungsamplitude, bei der ein Werkstoff unter symmetrischer Wechselbelastung 10^7 Lastspiele erträgt ohne zu brechen. Sie ist abhängig vom geprüften Festigkeitszustand und beträgt etwa 1/3 der Zugfestigkeit R_m .

Erweichungsbeständigkeit

Vickershärte nach Wärmebehandlung (typische Werte)

Lieferbare Ausführungen

- Bänder in Ringen mit Außendurchmesser bis 1400 mm
- Gespulte Bänder mit
 Spulengewichten bis 1,5 t
- Multicoil bis 5 t

- Feuerverzinnte Bänder
- Profilgefräste Bänder
- Bleche
- Schutzbeschichtete
 Bleche und Bänder

Lieferbare Abmessungen

- Banddicke ab 0,10 mm, dünnere Abmessungen auf Anfrage
- Bandbreite ab 3 mm, iedoch mindestens 10 x Banddicke

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA infona@wieland.com | wieland-rolledproductsna.com