WIELAND-N39

ROLLED PRODUCTS

CuNi13Zn25Pb1 C79200

Material Designation				
EN CW404J				
UNS*	C79200			

^{*}Unified Numbering System (USA)

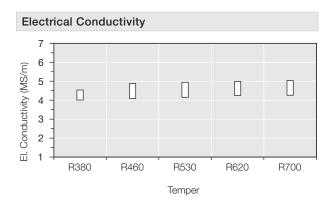
Chemical Composition (Reference)				
Cu	62 %			
Ni	13 %			
Pb	1 %			
Zn	balance			

Typical Applications

- Keys for automotive industry
- Keys for high security cylinders
- Musical instruments
- Watch components

Physical Properties*				
Electrical Conductivity ***	MS/m % IACS	4.4 8		
Thermal Conductivity	W/ (m·K)	34		
Coefficient of Electrical Resistance**	10 ⁻³ /K	0.4		
Coefficient of Thermal Expansion**	10 ⁻⁶ /K	18.0		
Density	g/cm³	8.67		
Modulus of Elasticity	GPa	130		
Specific Heat	J/(g·K)	0.380		
Poisson's Ratio	0.34			

^{*} Reference values at room temperature

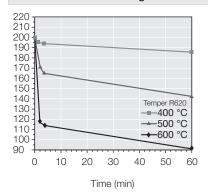

Fabrication Properties				
Capacity for Being Cold Worked	good			
Machinability	excellent			
Capacity for Being Electroplated	excellent			
Capacity for Being Hot-Dip Tinned	excellent			
Soft Soldering	excellent			
Resistance Welding	good			
Gas Shielded Arc Welding	fair			
Laser Welding	fair			

Corrosion Resistance

Corrosion and tarnishing resistance in a range of environments, including fresh water, sea water and industrial atmospheres.

Mechanical Properties						
Temper		R380	R460	R530	R620	R700
Tensile Strength R _m	MPa	380–470	460–540	530–610	620–700	≥ 700
Yield Strength R _{p0.2}	MPa	≥ 260	≥ 320	≥ 420	≥ 530	≥ 630
Elongation A _{50mm}	%	≥ 15	≥ 6	≥ 3	-	-

Temper	H110	H130	H155	H180	H200
Hardness HV	110–140	130-160	155–185	180–210	≥ 200


^{**} Between 0 and 300 °C

WIELAND-N39

CuNi13Zn25Pb1

C79200

Resistance to Softening

Vickers hardness after heat treatment (typical values)

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10^7 load cycles under symmetrical alternate load without breaking. It is dependent on the temper tested and is about 1/3 of the tensile strength R_m .

Types and Formats available

- Standard coils with outside diameters up to 1200 mm
- Traverse-wound coils with drum weights up to 1.5 t
- Multicoil up to 5 t
- Contour-milled strip
- Sheet

Dimensions available

- Strip thickness from 0.50 mm, thinner gauges on request
- Strip width from 3 mm, however min. 10 x strip thickness