wieland

Wieland-K15

Cu-DLP | C12000

Material designation			
EN	CW023A		
UNS*	C12000		
*I Initiand Numbering Queters (IICA)			

*Unified Numbering System (USA)

Physical properties*		
Electrical	MS/m	52
conductivity***	%IACS	90
Thermal		
conductivity	W/(m·K)	350
Coefficient of		
electrical resistance**	10 ⁻³ /K	3.6
Coefficient of		
thermal expansion**	10 ⁻⁶ /K	17.7
Density	g/cm ³	8.94
Modulus of elasticity	GPa	132
Specific heat	J/(g·K)	0.386
Poisson's ratio		0.34

Chemical composition (Reference)			
Cu	≥ 99.90 %		
Ρ	0.005-0.012 %		

excellent

excellent

excellent

excellent

excellent

fair

less suitable

less suitable

Fabrication properties

Capacity for being

Capacity for being

Capacity for being

Resistance welding

cold worked

Machinability

electroplated

hot-dip tinned

Soft soldering

Gas shielded arc welding

Laser welding

Typical applications

- Apparatus industry
- Leadframes for power semiconductors
- Cable strip

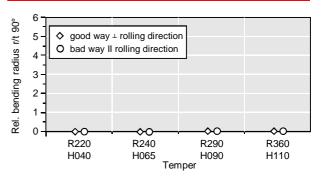
Corrosion Resistance

Resistant to: industrial atmosphere (formation of dark resp. green protective layers), industrial and drinking water, pure water vapour, non oxidizing acids, alkalis (except for ammonia and cyanide-containing compounds), neutral saline solutions.

Not resistant to: oxidizing acids, hydrous ammonia and halogenated gases, hydrogen sulfide, seawater.

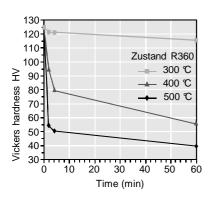
* Reference values at room temperature

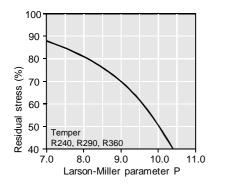
** Between 0 and 300 ℃


*** Minimum value in soft temper

Mechanical properties						
Temper		R220	R240	R290	R360	
Tensile strength R _m	MPa	220-260	240-300	290-360	≥ 360	
Yield strength R _{p0.2}	MPa	≤ 140	≥ 180	≥ 250	≥ 320	
Elongation A _{50mm}	%	≥ 33	≥ 8	≥ 4	≥ 2	

Temper	H040	H065	H090	H110
Hardness HV	45-65	65-95	90-110	≥ 110


Bendability (Strip thickness t ≤ 0.5 mm)


Wieland-K15

Cu-DLP | C12000

Resistance to softening

Thermal stress relaxation

Stress remaining after thermal relaxation as a function of Larson-Miller parameter P (F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) given by: $P = (20 + log(t))^*(T + 273)^*0.001$. Time t in hours, temperature T in °C. Example: P = 9 is equivalent to 1,000 h/118 °C. Measured on rolled to temper specimens parallel to rolling direction. Total stress relaxation depends on the applied stress level.

Furthermore, it is increased to some extent by cold deformation.

Fatigue strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10^7 load cycles under symmetrical alternate load without breaking. It is dependent on the temper tested and is about 1/3 of the tensile strength R_m .

Types and formats available

- Standard coils with outside diameters up to 1,400 mm
- Traverse-wound coils with drum weights up to 1.5 t
- Multicoil up to 5 t
- Hot-dip tinned strip
- Contour-milled strip

Dimensions available

- Strip thickness from 0.10 mm, thinner gauges on request
- Strip width from 3 mm, however min. 10 x strip thickness

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com Vickers hardness after heat treatment (typical values)