Wieland-Z20

CuZn40

Material designation		
EN	CW509L	
UNS⁺	no UNS standard	
*Unified Numbering System (USA)		

Chemical composition (Reference)			
Cu	61 %		
Pb	0.2 %		
Zn	balance		

Typical applications

- Locks and metal fittings

wieland

- Keys
- Architecture

Physical properties*		
Electrical	MS/m	15
conductivity	%IACS	26
Thermal		
conductivity	W/(m·K)	117
Coefficient of		
electrical resistance**	10 ⁻³ /K	1.7
Coefficient of		
thermal expansion**	10 ⁻⁶ /K	20.3
Density	g/cm ³	8.41
Modulus of elasticity	GPa	102
Specific heat	J/(g·K)	0.375
Poisson's ratio		0.34

Fabrication properties	5
Capacity for being cold worked	fair
Machinability	fair
Capacity for being electroplated	excellent
Capacity for being hot-dip tinned	excellent
Soft soldering	excellent
Resistance welding	good
Gas shielded arc welding	fair
Laser welding	less suitable

Corrosion resistance

Good resistance to: fresh water, neutral or alkaline saline solutions, organic compounds as well as land, sea, and industrial atmosphere.

Not resistant to: acids, hydrous sulphur compounds, hydrous ammonia (stress corrosion cracking) in the non-stressrelieved condition.

* Reference values at room temperature

** Between 0 and 300 $^{\rm C}$

Mechanical properties				
Temper		R340	R400	R470
Tensile strength R _m	MPa	340-420	400-480	≥ 470
Yield strength R _{p0.2}	MPa	≤ 240	≥ 200	≥ 390
Elongation A _{50mm}	%	≥ 33	≥ 15	≥ 6

Temper	H085	H110	H140
Hardness HV	85-115	110-140	≥ 140

Electrical conductivity 19 18 conductivity (MS/m) 17 16 15 14 13 <u>ш</u> 12 -R340 R400 R470 H085 H110 H140 Temper

Wieland-Z20

CuZn40

Softening resistance

Vickers hardness after heat treatment (typical values)

Fatigue strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10^7 load cycles under symmetrical alternate load without breaking. It is dependent on the temper tested and is about 1/3 of the tensile strength R_m .

Types and formats available

- Standard coils with outside diameters up to 1,400 mm
- Contour-milled strip

- Sheet
- Strip and sheet with protective coating

Dimensions available

- Strip thickness from 0.20 mm
- Strip width from 3 mm,
- however min. 10 x strip thickness