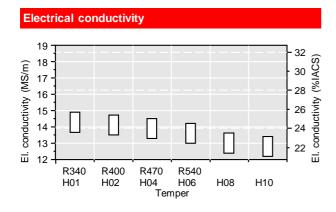


Wieland-Z21

CuZn38Pb2 | C35000 | CW608N

C35000 is a medium leaded brass where the combination of Zn and Pb contents allows excellent machinability and simultaneously moderate cold formability, including knurling and crimping. Therefore, this alloy finds application in watch and clock parts, precision mechanical components, and parts where both forming and machining operations are necessary.

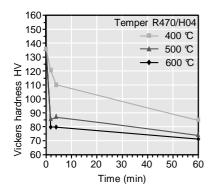

Chemical composition (Reference)							
Cu	60.5 %						
Pb	1.9 %						
Zn	remainder						

Physical properties (Reference value	es at roon	n temperatur	e)	
Electrical conductivity	14	MS/m	24	%IACS
Thermal conductivity	109	W/(m·K)	63	Btu·ft/(ft²·h·℉)
Coefficient of electrical resistance*	1.7	10 ⁻³ /K	0.9	10 ⁻³ /℉
Coefficient of thermal expansion*	20.4	10 ⁻⁶ /K	11.3	10 ⁻⁶ /F
Density	8.44	g/cm ³	0.305	lb/in ³
Modulus of elasticity	102	GPa	14,800	ksi
Specific heat	0.377	J/(g·K)	0.090	Btu/(lb·℉)
Poisson's ratio	0.34		0.34	

^{*} Between 0 and 300 ℃

Temper	Tensile strength R _m		Yield stre	ength R _{p0.2}	Elongation A ₅₀	Hardness HV
	MPa	ksi	MPa	ksi	%	
R340	340-420	49-61	≤ 240	≤ 35	≥ 33	(75-110)
R400	400-480	58-70	≥ 200	≥ 29	≥ 14	(110-140)
R470	470-550	68-80	≥ 390	≥ 57	≥ 5	(140-170)
R540	≥ 540	≥ 78	≥ 490	≥ 71	-	(≥ 165)
H01*	340-405	49-59				
H02*	380-450	55-65				
H04*	470-540	68-78				
H06*	545-615	79-89				
H08*	595-655	86-95				
H10*	620-685	90-99				

^{*} According to ASTM B121


Wieland-Z21

CuZn38Pb2 | C35000 | CW608N

Fatigue strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10^7 load cycles under symmetrical alternate load without breaking. It is dependent on the temper tested and is about 1/3 of the tensile strength $R_{\rm m}$.

Softening resistance

Vickers hardness after heat treatment (typical values)

Types and formats available

- Standard coils with outside diameters up to 1,400 mm
- Contour-milled strip

- Sheet
- Strip and sheet with protective coating

Dimensions available

- Strip thickness from 0.20 mm
- Strip width from 3 mm, however min. 10 x strip thickness

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA infona@wieland.com | wieland-rolledproductsna.com